ESCUELA DE DOCTORADO

 
Tesis Doctorales de la Universidad de Alcalá
FOREST ATTRIBUTES MAPPING WITH SAR DATA IN THE ROMANIAN SOUTH-EASTERN CARPATHIANS REQUIREMENTS AND OUTCOMES
Autor/aBorlaf Mena, Ignacio
DepartamentoGeología, Geografía y Medio Ambiente
Director/aTanase, Mihai Andrei
Codirector/aBadea BADEA, Ovidiu
Fecha de defensa25-11-2022
CalificaciónSobresaliente
ProgramaTecnologías de la Información Geográfica (RD 99/2011)
Mención internacional
ResumenEsta tesis doctoral se centra en la estimación de variables forestales en la zona Sureste de los Cárpatos Rumanos a partir de imágenes de radar de apertura sintética. La investigación abarca parte del preprocesado de las imágenes, métodos de generación de mosaicos y la extracción de la cobertura de bosque, sus subtipos o su biomasa. La tesis se desarrolló en el Instituto Nacional de Investigación y Desarrollo Forestal Marín Dracea (INCDS) y la Universidad de Alcalá (UAH) gracias a varios proyectos: el proyecto EO-ROFORMON del INCDS (Prototyping an Earth-Observation based monitoring and forecasting system for the Romanian forests), y el proyecto EMAFOR de la UAH (Synthetic Aperture Radar (SAR) enabled Analysis Ready Data (ARD) cubes for efficient monitoring of agricultural and forested landscapes). El proyecto EO-ROFORMON fue financiado por la Autoridad Nacional para la Investigación Científica de Rumania y el Fondo Europeo de Desarrollo Regional. El proyecto EMAFOR fue financiado por la Comunidad Autónoma de Madrid (España). El objetivo de esta tesis es el desarrollo de algoritmos para la extracción de variables forestales de uso general como la cobertura, el tipo o la biomasa del bosque a partir de imagen de radar de apertura sintética. Para alcanzar dicho propósito se analizaron posibles fuentes de sesgo sistemático que podrían aparecer en zonas de montaña (ej., normalización topográfica, generación de mosaicos), y se aplicaron técnicas de aprendizaje de máquina para tareas de clasificación y regresión. La tesis contiene ocho secciones: una introducción, cinco publicaciones en revistas o actas de congresos indexados, una pendiente de publicación (quinto capítulo) y las conclusiones. La introducción contextualiza la importancia del bosque, cómo se recoge la información sobre su estado (ej., inventario forestal) y las iniciativas o marcos legislativos que requieren dicha información. A continuación, se describe cómo la teledetección puede complementar la información de inventario forestal, detallando el contexto histórico de las distintas tecnologías, su funcionamiento, y cómo pueden ser aplicadas para la extracción de información forestal. Por último, se describe la problemática y el monitoreo del bosque en Rumanía, detallando el objetivo de la tesis y su estructura. El primer capítulo analiza la influencia del modelo digital de elevaciones (MDE) en la calidad de la normalización topográfica, analizando tres MDE globales (SRTM, AW3D y TanDEM-X DEM) y uno nacional (PNOA-LiDAR). Los experimentos se basan en la comparación entre órbitas, con un MDE de referencia, y la variación del acierto en la clasificación dependiendo del MDE empleado para la normalización. Los resultados muestran una menor diferencia ente órbitas al utilizar un MDE con una mejor resolución (ej. TanDEM-X, PNOA-LIDAR), especialmente en el caso de zonas con fuertes pendientes o formas del terreno complejas, como pueden ser los valles. En zonas de alta montaña las imágenes de radar de apertura sintética (SAR) sufren frecuentes distorsiones. Estas distorsiones dependen de la geometría de adquisición, por lo que es posible combinar imágenes adquiridas desde varias órbitas para que la cobertura sea lo más completa posible. El segundo capítulo evalúa dos metodologías para la clasificación de usos del suelo utilizando datos de Sentinel-1 adquiridos desde varias órbitas. El primer método crea clasificaciones por órbita y las combina, mientras que el segundo genera un mosaico con datos de múltiples órbitas y lo clasifica. El acierto obtenido mediante combinación de clasificaciones es ligeramente mayor, mientras que la clasificación de mosaicos tiene importantes omisiones de las zonas boscosas debido a problemas en la normalización topográfica y a los efectos direccionales. El tercer capítulo se enfoca en separar la cobertura forestal de otras coberturas del suelo (urbano, vegetación baja, agua) analizando la utilidad de las variables basadas en la coherencia interferométrica. En él se realizan tres clasificaciones de máquina vector-soporte basadas en un conjunto concreto de variables. El primer conjunto contiene las estadísticas anuales de la retrodispersión (media y desviación típica anual), el segundo añade la coherencia a largo plazo (separación temporal mayor a un año), el tercero incluye las estadísticas de la coherencia a corto plazo (mínima separación temporal). Utilizar variables basadas en la coherencia aumenta el acierto de la clasificación hasta un 5% y reduce los errores de omisión de la cobertura forestal. El cuarto capítulo evalúa la posibilidad de detectar talas selectivas utilizando datos de Sentinel-1 y Sentinel-2. Sus resultados muestran que la detección resulta muy difícil debido a la saturación de los sensores y la confusión introducida por el efecto de la fenología. El quinto capítulo se centra en la clasificación de tipos de bosque basado en una serie temporal de datos Sentinel-1. Se basa en la creación de un conjunto de modelos que describen la relación entre la retrodispersión y el ángulo local de incidencia para un determinado tipo de bosque y fecha concreta. Para cada píxel se calcula el residuo respecto al modelo de cada uno de los tipos de bosque, acumulando dichos residuos a lo largo de la serie temporal. Hecho esto, cada píxel es asignado al tipo de bosque que acumula un menor residuo. Los resultados son prometedores, mostrando que frondosas y coníferas tienen un comportamiento distintivo, y que es posible separar ambos tipos de bosque con un alto grado de acierto. El sexto capítulo está dedicado a la estimación de biomasa utilizando datos Sentinel-1, ALOS PALSAR y regresión Random Forest. Se obtiene un error similar para ambos sensores a pesar de utilizar una banda diferente (band-C vs. -L), con poca reducción en el error cuando ambas bandas se utilizan conjuntamente. Sin embargo, el ajuste de un estimador adaptado a las condiciones locales de Rumanía sí ofreció una reducción de del error al ser comparado con las estimaciones globales de biomasa.