ESCUELA DE DOCTORADO

 
Tesis Doctorales de la Universidad de Alcalá
Más información
ANÁLISIS AVANZADO DE REGISTROS DE ELECTRORRETINOGRAFÍA MULTIFOCAL APLICADO AL DIAGNÓSTICO DE ESCLEROSIS MÚLTIPLE
Autor/aOrtiz del Castillo, Miguel
DepartamentoElectrónica
Director/aSánchez Morla, Eva María
Codirector/aBoquete Vázquez, Luciano
Fecha de defensa20/06/2019
CalificaciónSobresaliente Cum Laude
ProgramaElectrónica: Sistemas Electrónicos Avanzados. Sistemas Inteligentes (RD 99/2011)
Mención internacionalNo
ResumenLa esclerosis múltiple (EM) es una enfermedad desmielinizante, adquirida, crónica, que impide el funcionamiento normal de la sustancia blanca del sistema nervioso central. En un gran número de casos, la vía visual se ve afectada durante el curso de la EM, e incluso en fases previas a la enfermedad. Por este motivo, es pertinente el estudio de la estructura y función de la vía visual en el diagnóstico. La técnica electrofisiológica de electrorretinografía multifocal (mfERG) permite obtener la respuesta retiniana en un número elevado de zonas de la retina. Muy pocos trabajos previos investigan la capacidad discriminante del análisis de las señales de mfERG para el diagnóstico de EM, todos ellos utilizan el análisis clásico de amplitudes y latencias y, los resultados obtenidos en estos estudios no son concluyentes. El objetivo de la presente tesis ha sido explorar la capacidad de la electrorretinografía multifocal para la investigación y el diagnóstico clínico de esclerosis múltiple, utilizando algoritmos avanzados de análisis de señal. Se ha utilizado una base de datos de registros mfERG de dos grupos de sujetos: 6 controles (M:H=3:3) y 10 pacientes con diagnóstico de esclerosis múltiple, sin historial de neuritis óptica (M:H=7:3) obtenidos mediante el equipo Reti-Port/scan 21 de Roland. Las señales de mfERG han sido analizadas mediante diversas técnicas matemáticas hasta ahora no aplicadas en este campo clínico, con el objetivo de facilitar nuevos biomarcadores para la detección de EM. Estas técnicas son el análisis espectral singular, la representación dispersa de una señal y la descomposición empírica en modos. Además se propone el empleo de redes neuronales, la utilización de la función de correlación como característica discriminante y la realización de un análisis topográfico más detallado para mejorar su aplicabilidad. La capacidad discriminante de los métodos propuestos ha sido evaluada mediante el área bajo la curva ROC: AUC. Mediante el análisis de los marcadores de amplitudes y latencias, se obtienen valores de media de AUC inferiores a 0,6158, mientras que tras el empleo de las técnicas matemáticas descritas, se consigue mejorar en gran medida la capacidad de discriminación: redes neuronales, AUC de 0,7650; análisis espectral singular, AUC de 0,8348; representación dispersa, AUC de 0,7515; descomposición empírica en modos, AUC de 0,8726; y análisis topográfico, AUC de 0,8854. En todos los métodos de análisis de los registros de mfERG propuestos los valores de discriminación entre controles y pacientes son superiores a los conseguidos con la técnica tradicional de análisis de amplitud y latencias. Dichos resultados sugieren que el análisis de los registros mfERG sería aplicable para el diagnóstico de esclerosis múltiple en sus fases iniciales