ESCUELA DE DOCTORADO

 
Tesis Doctorales de la Universidad de Alcalá
Más información
A STRUCTURAL AND QUANTITATIVE ANALYSIS OF THE WEBOF LINKED DATA AND ITS COMPONENTS TO PERFORM RETRIEVAL DATA
Autor/aNogales Moyano, Alberto
DepartamentoCiencias de la Computación
Director/aGarcía Barriocanal, María Elena
Codirector/aSicilia Urbán, Miguel Ángel
Fecha de defensa23/07/2018
CalificaciónSobresaliente Cum Laude
ProgramaIngeniería de la Información y del Conocimiento (RD 99/2011)
Mención internacionalSi
ResumenEsta investigación consiste en un análisis cuantitativo y estructural de la Web of Linked Data con el fin de mejorar la búsqueda de datos en distintas fuentes. Para obtener métricas cuantitativas de la Web of Linked Data, se aplicarán técnicas estadísticas. En el caso del análisis estructural haremos un Análisis de Redes Sociales (ARS). Para tener una idea de la Web of Linked Data para poder hacer un análisis, nos ayudaremos del diagrama de la Linking Open Data (LOD) cloud. Este es un catálogo online de datasets cuya información ha sido publicada usando técnicas de Linked Data. Los datasets son publicados en un lenguaje llamado Resource Description Framework (RDF), el cual crea enlaces entre ellos para que la información pudiera ser reutilizada. El objetivo de obtener un análisis cuantitativo y estructural de la Web of Linked Data es mejorar las búsquedas de datos. Para ese propósito nosotros nos aprovecharemos del uso del lenguaje de marcado Schema.org y del proyecto Linked Open Vocabularies (LOV). Schema.org es un conjunto de etiquetas cuyo objetivo es que los Webmasters pudieran marcar sus propias páginas Web con microdata. El microdata es usado para ayudar a los motores de búsqueda y otras herramientas Web a entender mejor la información que estas contienen. LOV es un catálogo para registrar los vocabularios que usan los datasets de la Web of Linked Data. Su objetivo es proporcionar un acceso sencillo a dichos vocabularios. En la investigación, vamos a desarrollar un estudio para la obtención de datos de la Web of Linked Data usando las fuentes mencionadas anteriormente con técnicas de ¿ontology matching¿. En nuestro caso, primeros vamos a mapear Schema.org con LOV, y después LOV con la Web of Linked Data. Un ARS de LOV también ha sido realizado. El objetivo de dicho análisis es obtener una idea cuantitativa y cualitativa de LOV. Sabiendo esto podemos concluir cosas como: cuales son los vocabularios más usados o si están especializados en algún campo o no. Estos pueden ser usados para filtrar datasets o reutilizar información.